汽车研究所

汽车研究所
副高级职称

吕超

吕超

副教授

博导 硕导

学院专业

机械车辆学院 车辆工程

办公地址

车辆实验楼 103

100081

办公电话

010-68915012

chaolu@bit.edu.cn

教育及工作经历

2016.01至今,平博pinnacle体育平台,车辆工程系,讲师,副教授

2017.06-2017.12,英国克兰菲尔德大学,访问学者

2011-2013,英国利兹大学,教学助理

2010.10-2015.01,英国利兹大学,工学博士学位

2005.09-2009.06,平博国际体育官网,工学学士学位

主要研究方向

智能车辆机器学习技术(强化学习、迁移学习、深度学习

智能车辆场景理解与驾驶行为建模

智能车辆类人决策系统与智能交通系统

代表性论文及研究项目

代表论文:

[1] Z. Zhang, C. Lu*, G. Cui, X. Meng, C. Gong and J. Gong. Prediction of Pedestrian Spatial-Temporal Risk Levels for Intelligent Vehicles: A Data-driven Approach[J]. IEEE Transactions on Vehicular Technology, 2024. (领域顶级期刊SCI, Q1, IF: 6.8)

[2] H. Lu, Y. Liu, M. Zhu, C. Lu*, H. Yang and Y. Wang, Enhancing Interpretability of Autonomous Driving Via Human-Like Cognitive Maps: A Case Study on Lane Change[J]. IEEE Transactions on Intelligent Vehicles, 2024. (领域顶级期刊SCI, Q1, IF: 8.2)

[3] Lu C, Lu H, Chen D, et al. Human-like decision making for lane change based on the cognitive map and hierarchical reinforcement learning[J]. Transportation research part C: emerging technologies, 2023, 156: 104328. (领域顶级期刊SCI, Q1, IF: 8.3)

[4] Gong H, Li Z, Lu C*, et al. Leveraging Multi-Stream Information Fusion for Trajectory Prediction in Low-Illumination Scenarios: A Multi-Channel Graph Convolutional Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. (领域顶级期刊SCI, Q1, IF: 8.5)

[5] Lin Y, Li Z, Gong C, Lu C*, et al. Continual Interactive Behavior Learning With Traffic Divergence Measurement: A Dynamic Gradient Scenario Memory Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. (领域顶级期刊SCI, Q1, IF: 8.5).

[6] Liu Q, Liu H, Lu C*, et al. Human-Like Wall-Climbing Planning for Heavy Unmanned Ground Vehicles Using Driver Model and Dynamic Motion Primitives[J]. IEEE/ASME Transactions on Mechatronics, 2023. (领域顶级期刊SCI, Q1, IF: 6.4).

[7] Liu Q X, Yao H, Lu C*, et al. Object-Level Attention Prediction for Drivers in the Information-Rich Traffic Environment[J]. IEEE Transactions on Industrial Electronics, 2023. (领域顶级期刊SCI, Q1, IF: 7.7).

[8] Yi Y, Lu C*, Wang B, et al. Fusion of Gaze and Scene Information for Driving Behaviour Recognition: A Graph-Neural-Network-Based Framework [J]. IEEE Transactions on Intelligent Transportation Systems, 2023. (领域顶级期刊SCI, Q1, IF: 8.5)

[9] Li Z, Gong C, Lin Y, …, Lu C*, et al. Continual Driver Behaviour Learning for Connected Vehicles and Intelligent Transportation Systems: Framework, Survey and Challenges[J]. Green Energy and Intelligent Transportation, 2023: 100103.

[10] Li J, Lu C*, Li P, et al. Driver-Specific Risk Recognition in Interactive Driving Scenarios using Graph Representation [J]. IEEE Transactions on Vehicular Technology, 2022 (领域顶级期刊SCI, Q1, IF: 6.239)

[11] Lu C , Lv C, Gong J*, et al. Instance-Level Knowledge Transfer for Data-Driven Driver Model Adaptation With Homogeneous Domains [J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(10): 17015-17026. (领域顶级期刊SCI, Q1, IF: 9.551)

[12] Li Z, Gong J, Lu C*, et al. A Hierarchical Framework for Interactive Behaviour Prediction of Heterogeneous Traffic Participants based on Graph Neural Network [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9102-9114. (领域顶级期刊SCI, Q1, IF: 9.551)

[13] Hu J, Hu Y, Lu C*, et al. Integrated Path Planning for Unmanned Differential Steering Vehicles in Off-road Environment with 3D Terrains and Obstacles [J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(6): 5562-5572. (领域顶级期刊SCI, Q1, IF: 9.551)

[14] Li Z, Gong J, Lu C*, et al. Personalized Driver Braking Behavior Modeling in the Car-Following Scenario: An Importance-Weight-Based Transfer Learning Approach [J]. IEEE Transactions on Industrial Electronics, 2022,69(10): 10704-10714. (SCI) (领域顶级期刊SCI, Q1, IF: 7.7).

[15] Lu H, Lu C*, Yu Y, et al. Autonomous Overtaking for Intelligent Vehicles Considering Social Preference Based on Hierarchical Reinforcement Learning [J]. Automotive Innovation, 2022,5(2): 195-208. (SCI, IF: 6.1)

[16] Yang L, Lu C, Xiong G, et al. A hybrid motion planning framework for autonomous driving in mixed traffic flow[J]. Green Energy and Intelligent Transportation, 2022, 1(3): 100022.

[17] Li Z, Gong J, Lu C*, et al. Interactive Behaviour Prediction for Heterogeneous Traffic Participants In the Urban Road: A Graph Neural Network-based Multi-task Learning Framework [J]. IEEE/ASME Transactions on Mechatronics, 2021(领域顶级期刊SCI, Q1, IF: 5.867)

[18] Lu C, Hu F, Cao D, et al. Transfer Learning for Driver Model Adaptation in Lane-Changing Scenarios Using Manifold Alignment [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8):3281-3293. (领域顶级期刊SCI, Q1, IF: 9.551)

[19] Li Z, Gong J, Lu C*, et al. Importance Weighted Gaussian Process Regression for Transferable Driver Behaviour Learning in the Lane Change Scenario [J]. IEEE Transactions on Vehicular Technology, 202069(11): 12497-12509. (领域顶级期刊SCI, Q1, IF: 6.239)

[20] Liu Q, Xu S, Lu C*, et al. Early Recognition of Driving Intention for Lane Change Based on Recurrent Hidden Semi-Markov Model [J]. IEEE Transactions on Vehicular Technology,2020,69(10): 10545-10557. (领域顶级期刊SCI, Q1, IF: 6.239)

[21] Lu C, Hu F, Cao D, et al. Virtual-to-Real Knowledge Transfer for Driving Behaviour Recognition: Framework and a Case Study [J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6391-6402. (领域顶级期刊SCI, Q1, IF: 6.239)

[22] Lu C, Wang H, Lv C, et al. Learning Driver-Specific Behavior for Overtaking: A Combined Learning Framework [J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6788-6802. (领域顶级期刊SCI, Q1, IF: 6.239)

[23] Lv C, Xing Y, Lu C, et al. Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle [J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5718-5729. (领域顶级期刊SCI, Q1, IF: 6.239)

[24] Chen Y, Lu C and Chu W. A Cooperative Driving Strategy Based on Velocity Prediction for Connected Vehicles with Robust Path-following Control [J]. IEEE Internet of Things Journal, 2020. (领域顶级期刊SCI, Q1, IF: 9.936).

[25] Xing Y, Lv C, Cao D, C, Lu C. Energy-Oriented Driving Behavior Analysis and Personalized Prediction of Vehicle Energy Usage with Joint Time Series Modeling Corresponding [J]. Applied Energy, 2020, 261,114471. (领域顶级期刊SCI, Q1, IF: 8.848)

[26] Yang S, Wang W, Lu C, et al. A Time Efficient Approach for Decision-Making Style Recognition in Lane-Change Behavior [J]. IEEE Transactions on Human-Machine Systems, 2019, 49(6): 579-588. (SCI, Q2, IF: 4.124)

[27] Yang L, Zhao C, Lu C, et al. Lateral and Longitudinal Driving Behavior Prediction Based on Improved Deep Belief Network [J]. Sensors, 21(24): 8498. [J]. Sensors, 2019, 19, 3672. (SCI, Q2, IF: 3.847)

[28] Lu C, Gong J, Lv C, et al. A Personalized Behavior Learning System for Human-Like Longitudinal Speed Control of Autonomous Vehicles [J]. Sensors, 2019, 19, 3672. (SCI, Q2, IF: 3.847)

[29] Lu C, Huang J, Deng L, et al. Coordinated ramp metering with equity consideration using reinforcement learning [J]. Journal of Transportation Engineering, Part A: Systems, 2017, 143(7): 04017028. (SCI)

[30] Lu C, Huang J. A self-learning system for local ramp metering with queue management [J]. Transportation Planning and Technology, 2017, 40(2): 182-198. (SCI)

[31] Lu C, Huang J, Gong J. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters[J]. Promet-Traffic&Transportation, 2016, 28(4): 371-381. (SCI)

[32] Lu C, Zhao Y, Gong J. Intelligent ramp control for incident response using dyna-architecture [J]. Mathematical Problems in Engineering, 2015, 2015. (SCI)

[33] Majid H, Lu C, Karim H. An integrated approach for dynamic traffic routing and ramp metering using sliding mode control [J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(2): 116-128.

[34] Lu C, Chen H, Grant-Muller S. Indirect reinforcement learning for incident-responsive ramp control [J]. Procedia-Social and Behavioral Sciences, 2014, 111: 1112-1122.

[35] Lu C, Chen H. Hierarchical planning for agent-based traffic management and control [J]. IFAC Proceedings Volumes, 2012, 45(24): 256-261.

[36] 崔格格, 吕超, 李景行, 熊光明*.数据驱动的智能车个性化场景风险图构建[J]. 汽车工程, 2023.

[37] 张哲雨, 吕超*, 李景行, 熊光明, 吴绍斌, 龚建伟. 基于车辆视角数据的行人轨迹预测与风险等级评定[J]. 汽车工程, 2022, 44(5): 675-683.

[38] 吕超,鲁洪良,于洋,王昊阳,吴绍斌.基于分层强化学习和社会偏好的自主超车决策系统[J].中国公路学报,2022,35(03):115-126.

[39] 吕超,崔格格,孟相浩,陆军琰,徐优志,龚建伟.基于图表示的智能车行人意图识别方法[J].平博国际体育官网学报,2022,42(07):688-695.

[40] 龚建伟,龚乘,林云龙,李子睿,吕超*.智能车辆规划与控制策略学习方法综述[J].平博国际体育官网学报,2022,42(07):665-674.

代表项目:

[41] 科技创新2030—“新一代人工智能重大项目,基于路端强化的自动驾驶决策关键技术,子课题负责人

[42] 国家自然科学基金面上项目,复杂交互环境下智能车辆类脑风险认知与可持续学习方法研究,主持

[43] 国家自然科学基金青年项目,智能车辆类人驾驶行为知识迁移原理与在线学习建模方法研究,主持

[44] 上汽基金会产学研重点项目,人类驾驶员城区环境下道路交叉口行驶的决策规划模型研究与应用,主持

[45] 国家自然科学基金联合基金项目,地面移动平台脑机混合操控基础理论与关键技术,参加

[46] 国家自然科学基金面上项目,融合驾驶员操纵特性和脑电信息的车速预测方法,参加

成果及荣誉

北京市科技进步二等奖,指导学生获平博国际体育官网2020年度优秀硕士论文奖第二十四届与二十五届中国机器人及人工智能大赛全国一等奖北京市一等奖2022世界人工智能大会AI驾驶仿真挑战赛一等奖2023中国国际智能网联汽车大赛技术优胜奖

社会职务

CAA平行智能专业委员会委员(2018-

世界交通运输大会(WTC)技术委员会委员(2018-